Synthesis of a diastereoisomer of the C-15~C-26 segment of amphidinolide \mathbf{L}

Masashi Tsuda, Akiko Hatakeyama and Jun'ichi Kobayashi*
Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan

In order to determine the absolute stereochemistry of amphidinolide L 1 , a cytotoxic macrolide from a marine dinoflagellate, $(16 R, 18 S, 20 R, 22 S, 23 R$, and $25 R)-2$, one of the eight possible diastereoisomers of the $\mathbf{C}(15)-\mathbf{C}(26)$ segment has been synthesized, thus providing an authentic sample for degradation studies of 1 .

Marine dinoflagellates of the genus Amphidinium have proven to be a rich source of bioactive substances with a unique carbon framework. ${ }^{1}$ Recently we have isolated a new cytotoxic $27-$ membered macrolide, amphidinolide L 1, from a culture of the

dinoflagellate Amphidinium sp. which was separated from the Okinawan marine flatworm Amphiscolops breviviridis. ${ }^{2}$ The absolute stereochemistry of 4 (C-21, C-22, C-23, and C-25) out of the 10 chiral centres in $\mathbf{1}$ has been established by a combination of enantioselective synthesis of the two diastereoisomers of the $\mathrm{C}(21)-\mathrm{C}(26)$ segment and NOE data for $1 .{ }^{2}$ However, the absolute configurations at $\mathrm{C}-8, \mathrm{C}-9, \mathrm{C}-11, \mathrm{C}-16, \mathrm{C}-18$, and $\mathrm{C}-20$ remained to be clarified. In order to determine the absolute configurations at $\mathrm{C}-16, \mathrm{C}-18$ and $\mathrm{C}-20$ in $\mathbf{1}$, we planned to synthesize eight of the possible diastereoisomers of the $\mathrm{C}(15)-$ $\mathrm{C}(26)$ segment, which was expected to be obtained by ozonolysis of amphidinolide L 1. The synthetic route was based on a convergent strategy through cross-coupling between the aldehyde $\mathbf{3}$ and the iodide $\mathbf{4}$ (Scheme 1), which can be derived from commercially available methyl $(S)-(+)$ - and $(R)-(-)-3$-hydroxy-2-methylpropionate, respectively. This paper describes the synthesis of $(16 R, 18 S, 20 R, 22 S, 23 R, 25 R)-\mathbf{2}$, one of eight possible diastereoisomers for the $\mathrm{C}(15)-\mathrm{C}(26)$ segment of $\mathbf{1}$.

Results and discussion

The known alcohol ${ }^{3}$ 5, prepared from methyl (R)-(-)-3-hydroxy-2-methylpropionate in two steps, was subjected to Swern oxidation followed by treatment with $\mathrm{Me}_{2} \mathrm{CuLi}$ in $\mathrm{Et}_{2} \mathrm{O}$ to afford the alcohol 6 (63%) as a single diastereoisomer (Scheme 2). The relative stereochemistry of the hydroxy group in 6 was elucidated on the basis of the vicinal coupling constants \dagger of the corresponding p-methoxybenzylidene acetal 7 . The alcohol $\mathbf{6}$ was treated with 2-(trimethylsily)ethoxymethyl chloride (SEMCl) to yield 8, and then hydrogenated with Raney
\dagger The proton-proton coupling constants for $15 / 16,16 / 17 \alpha$, and $16 / 17 \beta$ were found to be $9.6,11.3$, and 4.7 Hz , respectively.

Scheme 1 Retrosynthesis of the $\mathrm{C}(15)-\mathrm{C}(26)$ segment 2 of amphidinolide L (1)

Scheme 2 Reagents and conditions: i, DMSO, $(\mathrm{COCl})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78^{\circ} \mathrm{C}, 45 \mathrm{~min}$, then $\mathrm{Et}_{3} \mathrm{~N},-50^{\circ} \mathrm{C}$; ii, CuI, MeLi, $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$; iii, SEMCl, $\operatorname{Pr}_{2}{ }_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, 40 min ; iv, Raney $\mathrm{Ni}, \mathrm{H}_{2}, \mathrm{EtOH}, 120$ $\mathrm{min} ; \mathrm{v}, \mathrm{I}_{2}, \mathrm{Ph}_{3} \mathrm{P}$, imidazole, benzene, RT, 20 min

Ni under an H_{2} atmosphere to give the SEM alcohol 9. Iodination of $\mathbf{9}$ led to the ($15 S, 16 S$)-iodide $\mathbf{4}$ in 40% yield for the 5 steps.

The $(23 R, 25 R)$-alcohol 10, prepared from methyl $(S)-(+)-3-$ hydroxy-2-methylpropionate by a 9 -step sequence, ${ }^{2}$ was applied to Swern oxidation followed by Wittig reaction to afford the

Scheme 3 Reagents and conditions: i, DMSO, $(\mathrm{COCl})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78^{\circ} \mathrm{C}, 45 \mathrm{~min}$, then $\mathrm{Et}_{3} \mathrm{~N},-50^{\circ} \mathrm{C}$; ii, $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Et}$, toluene, $50^{\circ} \mathrm{C}$, 12 h ; iii, DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$; iv, $(-)$-DET, $\operatorname{Ti}\left(\operatorname{Pr}^{\mathrm{i}} \mathrm{O}\right)_{4}$, $\mathrm{Bu}^{t} \mathrm{OOH}, \mathrm{MS}-4 \AA,-20^{\circ} \mathrm{C}, 19 \mathrm{~h}$; v, MPMOH, TI $\left(\mathrm{OPr}^{\mathrm{i}}\right)_{4}$, toluene, $100^{\circ} \mathrm{C}, 2 \mathrm{~h}$; vi, PivCl, pyridine, RT, 2.5 h ; vii, TESCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, 1 h ; viii, DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$; ix, DMSO, $(\mathrm{COCl})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \mathrm{C}, 1 \mathrm{~h}$, then $\mathrm{Et}_{3} \mathrm{~N},-50^{\circ} \mathrm{C}$; x , vinyl MgBr , THF, $-78^{\circ} \mathrm{C}$, and then RT, 15 h ; xi, DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, phosphate buffer, RT, 10 min ; xii, $9-\mathrm{BBN}, \mathrm{THF}, \mathrm{RT}, 9 \mathrm{~h}$, and then $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{RT}, 15 \mathrm{~h}$; xiii, DMSO, $(\mathrm{COCl})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then $\mathrm{Et}_{3} \mathrm{~N},-50^{\circ} \mathrm{C}$
ethyl ester $\mathbf{1 1}$ (Scheme 3). Reduction of $\mathbf{1 1}$ with DIBAL and then Sharpless epoxidation with $(2 R, 3 R)-(+)$-diethyl tartrate gave the epoxy alcohol 12, which was subjected to regio- and stereo-selective ring opening of the epoxide with titanium $\operatorname{tetra}\left(p\right.$-methoxybenzyl)alkoxide $\left[\mathrm{Ti}(\mathrm{OMPM})_{4}\right]^{4}$ to yield a ($12: 1$) mixture of the 1,2-13 and 1,3-diol (51%). After a threestep conversion of the mixture, the desired 1,2 -diol was obtained as the triethylsiloxy alcohol $15(68 \%)$. Swern oxidation of $\mathbf{1 5}$ afforded the corresponding aldehyde, which was treated with vinylmagnesium bromide in THF to give the 20,21-anti 16a and -syn isomers 16b in 74 and 4.7% yield, respectively, for the two steps. The stereochemistry of the major 20,21-antialcohol 16a was assigned on the basis of the NOESY data for the corresponding 4-methoxybenzylidene acetal 17 , which was obtained by treatment of 16a with 2,3-dichloro-5,6-dicyano-pbenzoquinone (DDQ) in THF/1 м phosphate buffer adjusted to $\mathrm{pH} 7(9: 1) .{ }^{5}$ The stereoselectivity of the Grignard reaction of the aldehyde form of $\mathbf{1 5}$ can be explained by nucleophilic addition via a Felkin-Anh model. ${ }^{6}$ Hydroboration of 17 with 9borabicyclo[3.3.1]nonane ($9-\mathrm{BBN}$) and then treatment with hydroperoxide under alkaline conditions gave the alcohol 18 (85%), which was oxidized to the corresponding aldehyde 3 . The cross-coupling reaction between $\mathbf{3}$ and $\mathbf{4}$ was performed by treatment of the latter with $\mathrm{Bu}^{t} \mathrm{Li}$ (2 equiv.) in diethyl etherpentane (2:3) at $-78^{\circ} \mathrm{C},{ }^{7}$ followed by addition of 3 to afford the $(18 S)$-19a and ($18 R$)-isomers 19b in 38 and 40% yield, respectively (Scheme 4). The absolute stereochemistry at C-18

$4 \xrightarrow[\text { ii }]{\mathrm{i}}$

MP
$+$

24

25
ii ${ }_{\mid c} \begin{gathered}\text { viii } \\ (76 \%)\end{gathered}$

Scheme 4 Reagents and conditions: i, $\mathrm{Bu}^{t} \mathrm{Li}, \mathrm{Et}_{2} \mathrm{O}$-pentane (2:3), $-78^{\circ} \mathrm{C}, 10 \mathrm{~min}$ and then RT, 1 h ; ii, 3, $-78^{\circ} \mathrm{C}, 10 \mathrm{~min}$, and then RT, 11 h; iii, MOMCl, $\operatorname{Pr}^{\mathrm{i}}{ }_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 17 \mathrm{~h} ; 20^{\circ} \mathrm{C}$; iv, TBAF, MS-4 Å, DMPU, $80^{\circ} \mathrm{C}, 15 \mathrm{~h}$; v, TPAP, NMO, MS-4 $\AA, \mathrm{CH}_{2} \mathrm{Cl} 2, \mathrm{RT}, 10 \mathrm{~h}$; vi, TMSSCH ${ }_{2} \mathrm{CH}_{2}$ STMS, $\mathrm{ZnI}_{2}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 10 \mathrm{~h}$; vii, TsOH, THF, RT, 5 h ; viii, $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, $\mathrm{RT}, 17 \mathrm{~h}$; ix, $\mathrm{Hg}\left(\mathrm{ClO}_{4}\right)_{2}, \mathrm{CaCO}_{3}, \mathrm{MeOH}-\mathrm{CHCl}_{3}$ (1:1), RT, 10 min
of 19 a and $\mathbf{1 9 b}$ was assigned on the basis of a modified Mosher method. ${ }^{\mathbf{8}} \ddagger$ The hydroxy group at $\mathrm{C}-18$ of $\mathbf{1 9}$ a was protected to

[^0]afford the MOM ether 20. Both TES and SEM groups in 20 were removed by treatment with tetrabutylammonium fluoride (TBAF) in 1,3-dimethyl-3,4,5,6-tetrahydropyrimidin-2(1H)one (DMPU) ${ }^{9}$ to yield the diol 21 (82%), while deprotection using HMPA in place of DMPU gave unwanted ethyl ether 22 (11%), which may be generated through elimination of the TMS group, together with 21 (35%) and 23 (33%). The hydroxy groups in 21 were oxidized with tetrapropylammonium perruthenate (TPAP) ${ }^{10}$ to give the diketone 24. An attempt at deprotection of $\mathbf{2 4}$ under acidic conditions gave a complex mixture, which was probably generated by hydration of the carbonyl groups. Therefore, the diketone $\mathbf{2 4}$ was converted into the bisdithiolane 25 by treatment of 24 with ethylenedithiobis(trimethylsilane) and zinc iodide. ${ }^{11}$ Deprotection with TsOH and then acetylation afforded the pentaacetate 26 in 76% yield for the two steps. Finally, deprotection of the dithiolanes in 26 with mercuric perchlorate $\left[\mathrm{Hg}\left(\mathrm{ClO}_{4}\right)_{2}\right]$ and $\mathrm{CaCO}_{3}{ }^{12}$ furnished ($16 R, 18 S, 20 R, 22 S, 23 R, 25 R$)-2, a diastereoisomer of the $\mathrm{C}(15)-\mathrm{C}(26)$ segment of amphidinolide L 1 (59%). Synthesis of the remaining seven possible diastereoisomers of the segment according to the present strategy is currently in progress. We anticipate that ozonolysis will give one of the eight diastereoisomers although the experiment has yet to be carried out. Further large-scale cultivation of the algae is in progress to provide sufficient quantities of $\mathbf{1}$ for degradation experiments.

Experimental

The IR and UV spectra were recorded on a JASCO FT/IR5300 and JASCO Ubest-35 spectrophotometer, respectively. Optical rotations were recorded on a JASCO DIP-360 polarimeter and $[\alpha]_{\mathrm{D}}$ values are given in 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker ARX-500 and JEOL EX-400 spectrometers, respectively; J values recorded in Hz . FAB mass spectra were obtained on a JEOL HX-110 spectrometer using glycerol as a matrix. EI mass spectra (EIMS) were recorded on a JEOL DX-303 spectrometer.

(2R,3S)-1-Benzyloxymethyloxy-2-methylbutan-3-ol 6

To a solution of oxalyl chloride ($2.5 \mathrm{ml}, 29 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(60 \mathrm{ml})$, DMSO ($3.0 \mathrm{ml}, 43 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{ml})$ was slowly added at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 10 min after which it was treated dropwise with a solution of (S)-(-)-3-benzyloxymethyloxy-2-methylpropan-1-ol ${ }^{5} 5(3.0 \mathrm{~g}$, 14.3 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$. After being stirred at $-78^{\circ} \mathrm{C}$ for 45 min , the mixture was then treated with triethylamine $(9.9 \mathrm{ml}, 71 \mathrm{mmol})$ and allowed to warm to $-50^{\circ} \mathrm{C}$. After addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ to the reaction mixture, it was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to afford a crude aldehyde, which was used in the following reaction without separation. $\mathrm{CuI}(5.15 \mathrm{~g}, 27.1 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{ml})$ was treated with an $\mathrm{Et}_{2} \mathrm{O}$ solution of 1.4 m MeLi (38.6 ml , $54.1 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$ for 15 min after which the stirred reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and treated with the crude aldehyde (3.13 g) in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$. Stirring was continued for 12 h , after which the reaction mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The organic phase was separated, washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was purified by a silica gel column (hexane-EtOAc, 3:1) to afford compound $6(1.75 \mathrm{~g}, 9.07 \mathrm{mmol}, 63.4 \%)$ as a colourless oil, $[a]_{\mathrm{D}}^{25}-16$ (c $\left.1, \mathrm{CDCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3200$, and $1600 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.90(3 \mathrm{H}, \mathrm{d}$, $J 7.0), 1.20(3 \mathrm{H}, \mathrm{d}, J 6.3), 1.77(1 \mathrm{H}, \mathrm{m}), 2.94(1 \mathrm{H}, \mathrm{d}, J 3.3)$, 3.57 (1 H , dd, $J .5$ and 9.7), 3.71 (1 H , dd, $J 4.7$ and 9.7), 4.62 $(2 \mathrm{H}, \mathrm{s}), 4.76(2 \mathrm{H}, \mathrm{s}), 4.75(2 \mathrm{H}, \mathrm{s})$ and $7.3-7.4(5 \mathrm{H}, \mathrm{m}) ; m / z$ (EIMS) $210\left(\mathrm{M}^{+}\right) ; m / z$ (HREIMS) $210.1264\left(\mathrm{M}^{+}\right.$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}: 210.1256$).
(2R,3S)-1-Benzyloxymethyloxy-2-methyl-3-[2-(trimethylsilyl)ethoxymethyloxy]butane 8
A solution of compound $\mathbf{6}(1.22 \mathrm{~g}, 5.42 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ $\mathrm{ml})$ was treated with $\operatorname{Pr}^{i}{ }_{2} \mathrm{NEt}(3.8 \mathrm{ml}, 22 \mathrm{mmol})$ and $\operatorname{SEMCl}(1.9$ $\mathrm{ml}, 11 \mathrm{mmol}$) at room temperature for 40 min . After addition to it of $1 \mathrm{~m} \mathrm{aq} . \mathrm{HCl}$, the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with saturated aqueous NaHCO_{3}, water, and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give a residue. This was purified by a silica gel column (hexane-EtOAc, 19:1) to afford compound $\mathbf{8}(1.85 \mathrm{~g}, 5.22 \mathrm{mmol}, 96 \%)$ as a colourless oil; $[a]_{\mathrm{D}}^{25}-11\left(c 1, \mathrm{CDCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 2980,2850$ and $1600 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.02(9 \mathrm{H}, \mathrm{s}), 0.94(3 \mathrm{H}, \mathrm{d}, J 7.1), 0.95(2 \mathrm{H}, \mathrm{t}, J$ $8.6), 1.20(3 \mathrm{H}, \mathrm{d}, J 6.1), 1.71(1 \mathrm{H}, \mathrm{m}), 2.69(1 \mathrm{H}, \mathrm{br}$ d, $J 5.9), 3.5-$ $3.8(5 \mathrm{H}, \mathrm{m}), 4.67(1 \mathrm{H}, \mathrm{d}, J 7.0)$ and $4.75(1 \mathrm{H}, \mathrm{d}, J 7.0) ; \mathrm{m} / \mathrm{z}$ (EIMS) $344\left(\mathrm{M}^{+}\right) ; m / z$ (HREIMS) $344.2045\left(\mathrm{M}^{+}\right.$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}: 344.2021$).

(2R,3S)-2-Methyl-3-[2-(trimethylsilyl)ethoxymethoxy]-butan-1-ol 9

To a stirred solution of compound $\mathbf{8}(1.85 \mathrm{~g}, 5.22 \mathrm{mmol})$ in $\mathrm{EtOH}(2 \mathrm{ml})$ was added a suspension of 50% Raney Ni ® in $\mathrm{EtOH}(5 \mathrm{ml})$. Stirring was continued for 120 h at room temperature under an H_{2} atmosphere, after which the mixture was filtered through Celite to remove the catalyst and the filtrate was evaporated to give a residue. This was purified on a silica gel column (hexane-EtOAc, 4:1) to afford compound 9 (1.04 g , $4.43 \mathrm{mmol}, 84.9 \%)$ as a colourless oil; $[a]_{\mathrm{D}}^{25}-8\left(c 1, \mathrm{CDCl}_{3}\right) ; v_{\max } /$ $\mathrm{cm}^{-1} 3400,2980$ and 1605; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.02(9 \mathrm{H}, \mathrm{s}), 0.94(3 \mathrm{H}, \mathrm{d}$, $J 7.1), 0.95(2 \mathrm{H}, \mathrm{t}, J 8.6), 1.20(3 \mathrm{H}, \mathrm{d}, J 6.1), 1.71(1 \mathrm{H}, \mathrm{m}), 2.69$ (1H, br d, $J 5.9$), 3.5-3.8 ($5 \mathrm{H}, \mathrm{m}$), $4.67(1 \mathrm{H}, \mathrm{d}, J 7.0)$ and 4.75 (1H, d, J 7.0); m/z (EIMS) $238\left(\mathrm{M}^{+}\right) ; m / z$ (HREIMS) 238.1586 $\left(\mathrm{M}^{+}\right.$. Calc. for $\mathrm{C}_{11} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}$: 238.1603).

(2S,3S)-1-Iodo-2-methyl-3-[2-(trimethylsilyl)ethoxymethoxy]butane 4

To a solution of compound $9(948 \mathrm{mg}, 4.00 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(30$ $\mathrm{ml})$ was added $\mathrm{Ph}_{3} \mathrm{P}(3.2 \mathrm{ml}, 12 \mathrm{mmol})$, imidazole ($817 \mathrm{mg}, 12.0$ $\mathrm{mmol})$ and iodine $(2.03 \mathrm{~g}, 8.00 \mathrm{mmol})$ at room temperature. After being stirred for 20 min , the mixture was filtered through Celite to remove insoluble materials, and the filtrate was evaporated to give a residue. This was purified by a silica gel column (hexane- $\left.\mathrm{CHCl}_{3}, 9: 1\right)$ to afford compound $\mathbf{4}(1.08 \mathrm{~g}, 3.12 \mathrm{mmol}$, 78.1%) as a colourless oil, $[a]_{\mathrm{D}}^{25}-23\left(c 1, \mathrm{CDCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 2980$, 1600 and $1430 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.03(3 \mathrm{H}, \mathrm{s}), 0.93(1 \mathrm{H}, \mathrm{d}, J 7.7), 0.97$ $(1 \mathrm{H}, \mathrm{d}, J 7.7), 0.99(3 \mathrm{H}, \mathrm{d}, J 6.9), 1.16(3 \mathrm{H}, \mathrm{d}, J 6.3), 1.55(1 \mathrm{H}$, $\mathrm{m}), 3.31(2 \mathrm{H}, \mathrm{m}), 3.55(1 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{m}), 3.64(2 \mathrm{H}, \mathrm{m})$, $4.70(1 \mathrm{H}, \mathrm{d}, J 7.1)$, and $4.75(1 \mathrm{H}, \mathrm{d}, J 7.1)$; m / z (EIMS) 348 $\left(\mathrm{M}^{+}\right) ; m / z$ (HREIMS) $348.0570\left(\mathrm{M}^{+}\right.$. Calc. for $\mathrm{C}_{11} \mathrm{H}_{25} \mathrm{IO}_{2} \mathrm{Si}$: 348.0579).

Ethyl (2E,4R,6R)-6,7-isopropylidenedioxy-4-methylhept-2-

 enoate 11To a solution of oxalyl chloride ($1.5 \mathrm{ml}, 17 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30$ $\mathrm{ml})$, DMSO ($1.8 \mathrm{ml}, 26 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was slowly added at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 10 min . It was then treated dropwise with a solution of $(2 R, 4 R)-4,5-$ isopropylidenedioxy-2-methylpentan-1-ol ${ }^{2} \mathbf{1 0},(1.50 \mathrm{~g}, 8.60$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$. After being stirred at $-78^{\circ} \mathrm{C}$ for 45 min , the mixture was heated with $\mathrm{Et}_{3} \mathrm{~N}(6.0 \mathrm{ml}, 43 \mathrm{mmol})$ and then allowed to warm to $-50^{\circ} \mathrm{C}$. After addition to it of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to afford a crude aldehyde (1.55 g), which was used in the following reaction without separation. To a stirred solution of the crude aldehyde in toluene (30 ml) was added triphenyl(ethoxycarbonylmethylene)phosphorane (4.50 g , 12.9 mmol) at room temperature, and stirring was continued at $50^{\circ} \mathrm{C}$ for 12 h . After this the mixture was concentrated by solvent evaporation in vacuo, after which the residue was purified by a silica gel column (hexane-EtOAc, 19:1) to give compound 11 $(1.90 \mathrm{~g}, 7.84 \mathrm{mmol}, 91 \%)$ as a colourless oil; $[a]_{\mathrm{D}}^{25}+13$ ($c 1$,
$\left.\mathrm{CDCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3000,2950,1725,1660,1465,1385$ and 1275 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.09(3 \mathrm{H}, \mathrm{d}, J 6.7), 1.28(3 \mathrm{H}, \mathrm{t}, J 7.0), 1.33(3 \mathrm{H}, \mathrm{s})$, $1.39(3 \mathrm{H}, \mathrm{s}), 1.47(1 \mathrm{H}$, ddd, $J 5.7,7.6$ and 13.5$), 1.80(1 \mathrm{H}, \mathrm{m})$, $2.45(1 \mathrm{H}, \mathrm{m}), 3.49(1 \mathrm{H}, \mathrm{t}, J 7.1), 4.03(1 \mathrm{H}, \mathrm{dd}, J 5.9$ and 7.1$)$, $4.08(1 \mathrm{H}, \mathrm{m}), 4.12(1 \mathrm{H}, \mathrm{d}, J 7.1), 4.23(1 \mathrm{H}, \mathrm{d}, J 7.1), 5.78(1 \mathrm{H}$, dd, $J 1.2$ and 15.8) and $6.89(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and 15.8$) ; \mathrm{m} / \mathrm{z}$ (FABMS, Pos.) $243(\mathrm{M}+\mathrm{H})^{+} ; m / z$ (HRFABMS) 243.1612 $\left[(\mathrm{M}+\mathrm{H})^{+}\right.$. Calc. for $\left.\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{4}: 243.1596\right]$.

(2R,3R,4R,6R)-6,7-Isopropylidenedioxy-2,3-epoxy-4-methyl-heptan-1-ol 12

A solution of compound $\mathbf{1 1}(300 \mathrm{mg}, 1.24 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3$ ml) was treated dropwise with a 0.93 m hexane solution of DIBAL ($3.7 \mathrm{ml}, 3.5 \mathrm{mmol}$), and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min . After addition of $\mathrm{MeOH}(100 \mu \mathrm{l})$ to the mixture to decompose excess of reagent, it was allowed to warm to room temperature. $\mathrm{Et}_{2} \mathrm{O}$ and saturated aqueous potassium sodium tartrate were added to the reaction mixture, which was then stirred vigorously for 1 h . After this, the mixture was extracted with EtOAc, and the organic phase was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to afford a crude alcohol (242 mg). This was subjected to the following reaction. To a stirred suspension of $4 \AA$ molecular sieves (200 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml}$) containing diethyl (-)-tartrate (130 $\mathrm{mg}, 630 \mu \mathrm{~mol}$) was first added titanium tetraisopropoxide (150 $\mu \mathrm{l}, 500 \mu \mathrm{~mol})$ at $-20^{\circ} \mathrm{C}$, and then, dropwise, a solution of the crude alcohol (242 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$. After being stirred for 30 min the mixture was treated with a 3.5 m toluene solution of tert-butyl hydroperoxide $(1.10 \mathrm{ml}, 3.85 \mathrm{mmol})$ and stirring continued at $-20^{\circ} \mathrm{C}$ for 19 h . It was then poured into a cold and stirred solution of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(700 \mathrm{mg})$ and tartaric acid (200 mg) in water (2 ml). The mixture was then filtered to remove insoluble materials, treated with $30 \% \mathrm{NaOH}$ in brine and stirred at $0^{\circ} \mathrm{C}$ for 1 h . After this the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a residue which was purified on a silica gel column (hexane-EtOAc, 5:1) to afford compound $12(260 \mathrm{mg}, 1.20 \mathrm{mmol}, 97 \%)$ as a colourless oil; $[a]_{\mathrm{D}}^{25}-9$ (c 1, CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1} 3470,2995,1655,1380,1260,1220$ and $1165 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.99(3 \mathrm{H}, \mathrm{d}, J 6.7), 1.35(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}$, s), $1.40-1.63(2 \mathrm{H}, \mathrm{m}), 1.76-1.90(2 \mathrm{H}, \mathrm{m}), 2.81(1 \mathrm{H}, \mathrm{dd}, J 2.3$ and 7.2), $2.95(1 \mathrm{H}, \mathrm{m}), 3.50(1 \mathrm{H}, \mathrm{t}, J 7.6), 3.63(1 \mathrm{H}$, ddd, $J 4.2$, 7.2 and 12.5), 3.88 (1 H , ddd, $J 2.8,5.4$ and 12.5), $4.07(1 \mathrm{H}, \mathrm{dd}, J$ 5.9 and 7.9) and $4.26(1 \mathrm{H}, \mathrm{m}) ; \mathrm{m} / \mathrm{z}$ (FABMS, Pos.) 217 $(\mathrm{M}+\mathrm{H})^{+}, \quad 154$ and $136 ; \mathrm{m} / \mathrm{z}$ (HRFABMS) 217.1451 $\left[(\mathrm{M}+\mathrm{H})^{+}\right.$. Calc. for $\left.\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}_{4}: 217.1440\right]$.

($2 R, 3 S, 4 R, 6 R$)-6,7-Isopropylidenedioxy-3-(4-methoxy-benzyloxy)-4-methylheptane-1,2-diol 13

A mixture of p-methoxybenzyl alcohol $(7.9 \mathrm{ml}, 64 \mathrm{mmol})$ and titanium tetraisopropoxide ($3.1 \mathrm{ml}, 11 \mathrm{mmol}$) was stirred at $90^{\circ} \mathrm{C}$ for 30 min and then evaporated under reduced pressure. A solution of $\mathbf{1 2}(1.59 \mathrm{~g}, 7.35 \mathrm{mmol})$ in toluene (12 ml) was added to the residue, and stirring was continued at $100^{\circ} \mathrm{C}$ for 2 h. After this, the mixture was concentrated by solvent evaporation, and then treated with EtOAc and 5% aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$. It was then extracted with EtOAc. The extract was washed with saturated aqueous NaHCO_{3}, water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The resulting residue was subjected to chromatography on a silica gel column (hexane-EtOAc, 3:1) to afford a mixture ($12: 1$) of $\mathbf{1 3}(1.32 \mathrm{~g}, 3.72 \mathrm{mmol}, 51 \%)$ and the corresponding 1,3 -diol as a colourless oil; $v_{\max } / \mathrm{cm}^{-1} 3440,2950$, $1620,1380,1260$ and $1220 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.03(3 \mathrm{H}, \mathrm{d}, J 7.0), 1.35$ $(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{s}), 1.42(1 \mathrm{H}, \mathrm{ddd}, J 3.9,9.5$ and 17.5$), 1.75$ (1 H , ddd, $J 4.5,8.8$ and 17.5), $2.11(1 \mathrm{H}, \mathrm{m}), 2.37(1 \mathrm{H}, \mathrm{d}, J 5.8)$, $3.44-3.51(2 \mathrm{H}, \mathrm{m}), 3.74(2 \mathrm{H}, \mathrm{d}, J 4.5), 4.06(1 \mathrm{H}, \mathrm{dd}, J 5.8$ and 7.6), $4.12-4.22(1 \mathrm{H}, \mathrm{m}), 4.50(1 \mathrm{H}, \mathrm{d}, J 10.9), 4.60(1 \mathrm{H}, \mathrm{d}, J$ $10.9), 6.88(2 \mathrm{H}, \mathrm{d}, J 8.6)$ and 7.25 ($2 \mathrm{H}, \mathrm{d}, J 8.6$); m/z (FABMS, Pos.) $355\left(\mathrm{M}+\mathrm{H}^{+} ; \mathrm{m} / \mathrm{z}(\mathrm{HRFABMS}) 355.2122\left[(\mathrm{M}+\mathrm{H})^{+}\right.\right.$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{6}$: 355.2120].
($2 R, 3 S, 4 R, 6 R$)-6,7-Isopropylidenedioxy-3-(4-methoxy-benzyloxy)-4-methyl-1-trimethylacetoxyheptan-2-ol 14
Compound $\mathbf{1 3}(1.30 \mathrm{~g}, 3.69 \mathrm{mmol})$ was treated with pyridine (25 $\mathrm{ml})$ and pivaloyl chloride ($500 \mu \mathrm{l}, 4.03 \mathrm{mmol}$) at room temperature for 2.5 h . After concentration of the mixture by solvent evaporation, the residue was purified on a silica gel column (hexane-EtOAc, 9:1) to afford compound 14 ($1.45 \mathrm{~g}, 3.42$ $\mathrm{mmol}, 90 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}^{25}-9\left(c 1, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ $3400,2940,1605,1360,1295$ and $1240 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.01(3 \mathrm{H}, \mathrm{d}$, $J 6.7), 1.23(9 \mathrm{H}, \mathrm{s}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{s}), 1.48(1 \mathrm{H}, \mathrm{ddd}, J$ 4.0, 9.0 and 13.7), $1.78(1 \mathrm{H}$, ddd, $J 5.0,8.6$ and 13.7$), 2.15(1 \mathrm{H}$, $\mathrm{m}), 3.46(1 \mathrm{H}, \mathrm{dd}, J 3.2$ and 7.2$), 3.49(1 \mathrm{H}, \mathrm{t}, J 7.6), 3.80(3 \mathrm{H}, \mathrm{s})$, $3.89(1 \mathrm{H}, \mathrm{m}), 3.90(1 \mathrm{H}, \mathrm{m}), 4.06(1 \mathrm{H}$, dd, $J 5.8$ and 7.8$), 4.12-$ $4.24(2 \mathrm{H}, \mathrm{m}), 4.37(2 \mathrm{H}, \mathrm{dd}, J 2.7$ and 11.8), $4.49(1 \mathrm{H}, \mathrm{d}, J 10.7)$, $4.58(1 \mathrm{H}, \mathrm{d}, J 10.7), 6.87(2 \mathrm{H}, \mathrm{d}, J 8.6)$ and $7.25(2 \mathrm{H}, \mathrm{d}, J 8.6)$; m / z (FABMS, Pos.) $439(\mathrm{M}+\mathrm{H})^{+} ; m / z$ (HRFABMS) 439.2710 $\left[(\mathrm{M}+\mathrm{H})^{+}\right.$. Calc. for $\left.\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{O}_{7}: 439.2695\right]$.

($2 R, 3 S, 4 R, 6 R$)-6,7-Isopropylidenedioxy-3-(4-methoxy-benzyloxy)-4-methyl-2-triethylsilyloxyheptan-1-ol 15

To a stirred solution of the pivaloyl derivative $14(1.08 \mathrm{~g}, 2.46$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ were added $\mathrm{TESCl}(1.7 \mathrm{ml}, 9.9 \mathrm{mmol})$ and imidazole ($1.00 \mathrm{~g}, 14.7 \mathrm{mmol}$) at room temperature, and stirring was continued for 1 h . After dilution with water, the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to afford a crude triethylsilylate. This was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15$ $\mathrm{ml})$ and treated with a 0.93 m solution of DIBAL in hexane $(10.5 \mathrm{ml}, 9.85 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After being stirred for 30 min , the reaction mixture was treated with $\mathrm{MeOH}(10 \mathrm{ml})$ and allowed to warm to room temperature. After this, $\mathrm{Et}_{2} \mathrm{O}$ and saturated aqueous potassium sodium tartrate were added to the reaction mixture which was then stirred vigorously; it was then extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a residue. This was purified on a silica gel column (hexane-EtOAc, 17:3) to afford compound $15(872 \mathrm{mg}, 1.86 \mathrm{mmol}, 76 \%)$ as a colourless oil; $[a]_{\mathrm{D}}-12\left(c 1, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3400,2950,1600$, 1230 and $1060 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.64(6 \mathrm{H}, \mathrm{q}, J 7.7), 0.98(9 \mathrm{H}, \mathrm{t}, J$ 7.7), $0.99(3 \mathrm{H}, \mathrm{d}, J 7.3), 1.34(3 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.45(1 \mathrm{H}$, ddd, $J 4.7,8.7$ and 13.4), 1.75 (1 H , ddd, $J 5.4,8.0$ and 13.4), 2.05 (1 H , br dd, $J 3.7$ and 8.2), $3.47(2 \mathrm{H}, \mathrm{m}), 3.63-3.77(3 \mathrm{H}, \mathrm{m})$, $3.80(3 \mathrm{H}, \mathrm{s}), 4.05(1 \mathrm{H}, \mathrm{dd}, J 5.9$ and 7.4$), 4.15(1 \mathrm{H}, \mathrm{m}), 4.55$ ($1 \mathrm{H}, \mathrm{d}, J 10.7$), 4.65 ($1 \mathrm{H}, \mathrm{d}, J 10.7$), 6.87 ($2 \mathrm{H}, \mathrm{d}, J 8.6$) and 7.27 ($2 \mathrm{H}, \mathrm{d}, ~ J$ 8.6); m/z (FABMS, Pos.) $469(\mathrm{M}+\mathrm{H})^{+} ; \mathrm{m} / \mathrm{z}$ (HRFABMS) $473.2921\left[(\mathrm{M}+\mathrm{H})^{+}\right.$. Calc. for $\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{O}_{6} \mathrm{Si}$: 473.2936].

Grignard reaction of aldehyde from $\mathbf{1 5}$ with vinylMgBr

DMSO ($91 \mu \mathrm{l}, 1.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mu \mathrm{l})$ was slowly added at $-78{ }^{\circ} \mathrm{C}$ to a solution of oxalyl chloride ($75 \mu \mathrm{l}, 853 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml})$, and the mixture was stirred for 10 min . It was then treated dropwise with a solution of compound 15 (100 $\mathrm{mg}, 213 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mu \mathrm{l})$. After being stirred at $-78{ }^{\circ} \mathrm{C}$ for 45 min , the reaction mixture was treated with $\mathrm{Et}_{3} \mathrm{~N}(300 \mu \mathrm{l}$, 2.1 mmol) and then allowed to warm to $-50^{\circ} \mathrm{C}$. After addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ to it, the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to afford a crude aldehyde (139 mg), which was used in the following reaction without separation. Tо а 1 m THF solution of vinylmagnesium bromide ($640 \mu \mathrm{l}, 640 \mu \mathrm{~mol}$) in THF ($500 \mu \mathrm{l}$) was added a solution of the crude aldehyde (139 mg) in THF (2 ml) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 15 h and then gradually allowed to warm to room temperature. After addition to it of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was purified by chromatography on a silica gel column (hexane-EtOAc, 17:3) to afford ($3 R, 4 R, 5 S, 6 R, 8 R$)-8,9-isopropylidenedioxy-6-methyl-5-
(4-methoxybenzyloxy)-4-triethylsilyloxynon-1-en-3-ol 16a (78.4 $\mathrm{mg}, 158 \mu \mathrm{~mol}, 74 \%$) and the $3 S$-isomer $\mathbf{1 6 b}(5.0 \mathrm{mg}, 10 \mu \mathrm{~mol}$, 4.7%). Compound 16a was a colourless oil; $[\alpha]_{\mathrm{D}}^{25}-1.64$ (c 3, CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1} 3460,2860,1605,1455,1105$ and 1005 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.65(6 \mathrm{H}, \mathrm{q}, J 7.9), 0.98(9 \mathrm{H}, \mathrm{t}, J 7.9), 0.99(3 \mathrm{H}, \mathrm{d}, J$ $7.3), 1.34(3 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.45(1 \mathrm{H}$, ddd, $J 4.6,8.5$ and 13.5), $1.75(1 \mathrm{H}, \mathrm{ddd}, J 5.5,8.2$ and 13.5$), 2.13(1 \mathrm{H}, \mathrm{m}), 2.51$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.45(1 \mathrm{H}, \mathrm{dd}, J 2.5$ and 6.3$), 3.46(1 \mathrm{H}, \mathrm{t}, J 7.5), 3.79$ $(2 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 4.05(1 \mathrm{H}, \mathrm{dd}, J 6.0$ and 7.8$), 4.14(1 \mathrm{H}$, $\mathrm{m}), 4.29(1 \mathrm{H}, \mathrm{dd}, J 4.7$ and 6.0$), 4.50(1 \mathrm{H}, \mathrm{d}, J 10.9), 4.59(1 \mathrm{H}$, d, $J 10.8), 5.20(1 \mathrm{H}$, br d, $J 10.5), 5.32(1 \mathrm{H}$, br d, $J 17.3), 6.02$ (1 H, ddd, $J 6.2,10.5$ and 17.0), $6.87(2 \mathrm{H}, \mathrm{d}, J 8.6)$ and 7.27 (2H, d, J 8.6); m/z (FABMS, Pos.) $499(\mathrm{M}+\mathrm{H})^{+} ; m / z$ (HRFABMS) $499.3090\left[(\mathrm{M}+\mathrm{H})^{+}\right.$. Calc. for $\mathrm{C}_{26} \mathrm{H}_{47} \mathrm{O}_{6} \mathrm{Si}$: 499.3093].

Compound 16b was a colourless oil; [$a]_{\mathrm{D}}^{25}-3.4$ ($c 1, \mathrm{CHCl}_{3}$); $v_{\max } / \mathrm{cm}^{-1} 3460,2860,1605,1455,1105,1060$ and 1005; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.65(6 \mathrm{H}, \mathrm{q}, J 7.9), 0.98(9 \mathrm{H}, \mathrm{t}, J 7.9), 0.99(3 \mathrm{H}, \mathrm{d}, J$ $7.3), 1.34(3 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.51(1 \mathrm{H}$, ddd, $J 4.6,6.5$ and 13.5), $1.59(1 \mathrm{H}$, ddd, $J 5.5,7.2$ and 13.5), $2.22(1 \mathrm{H}, \mathrm{m}), 2.50$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.45(1 \mathrm{H}, \mathrm{dd}, J 2.5$ and 6.3$), 3.46(1 \mathrm{H}, \mathrm{t}, J 7.5), 3.79$ $(2 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 4.07(1 \mathrm{H}, \mathrm{t}, J 3.2), 4.15(1 \mathrm{H}, \mathrm{m}), 4.20(1 \mathrm{H}$, dd, $J 4.7$ and 6.0), $4.50(1 \mathrm{H}, \mathrm{d}, J 10.9), 4.59(1 \mathrm{H}, \mathrm{d}, J 10.8), 5.20$ ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 10.5$), $5.32(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 17.3), 6.02(1 \mathrm{H}$, ddd, $J 6.2$, 10.5 and 17.0), 6.87 ($2 \mathrm{H}, \mathrm{d}, J 8.6$) and 7.27 (2H, d, $J 8.6$); m / z (FABMS, Pos.) $499(\mathrm{M}+\mathrm{H})^{+} ; ~ m / z$ (HRFABMS) 499.3098 $\left[(\mathrm{M}+\mathrm{H})^{+}\right.$. Calc. for $\mathrm{C}_{26} \mathrm{H}_{47} \mathrm{O}_{6} \mathrm{Si}$: 499.3093].
($3 R, 4 R, 5 S, 6 R, 8 R$)-8,9-Isopropylidenedioxy-6-methyl-3,5-(4-methoxybenzylidenedioxy)-4-triethylsilyloxynon-1-ene 17
To a stirred solution of compound 16a $(86.0 \mathrm{mg}, 173 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$ and 1 m potassium phosphate buffer (pH 7.0 ; $0.22 \mathrm{ml})$ was added DDQ ($78.9 \mathrm{mg}, 348 \mu \mathrm{~mol}$) and stirring was continued at room temperature for 10 min . After addition to it of saturated aqueous NaHCO_{3}, the reaction mixture was extracted with EtOAc. The extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a residue, which was purified on a silica gel column (hexane-EtOAc, 9:1) to afford compound $17(73.6 \mathrm{mg}, 149 \mu \mathrm{~mol}, 86 \%)$ as a colourless oil; $[a]_{\mathrm{D}}^{25}-10\left(c 0.51, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 2945,1610,1455$ and $1245 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.63(6 \mathrm{H}, \mathrm{q}, J 7.8), 0.97(9 \mathrm{H}, \mathrm{t}, J 8.0), 1.00$ ($3 \mathrm{H}, \mathrm{d}, J 6.9$), $1.34(3 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.62(1 \mathrm{H}$, ddd, $J 5.0,8.5$ and 13.5), $1.77(1 \mathrm{H}$, ddd, $J 5.7,8.2$ and 13.5), $2.18(1 \mathrm{H}, \mathrm{m})$, $3.40-3.60(3 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.98(1 \mathrm{H}, \mathrm{t}, J 7.5), 4.06(1 \mathrm{H}, \mathrm{dd}$, $J 6.2$ and 7.7$), 4.19(1 \mathrm{H}, \mathrm{m}), 5.29(1 \mathrm{H}, \mathrm{d}, J 10.5), 5.45(1 \mathrm{H}, \mathrm{d}, J$ $17.2), 5.53(1 \mathrm{H}, \mathrm{s}), 5.97(1 \mathrm{H}, \mathrm{ddd}, J 6.6,10.5$ and 17.1$), 6.87$ ($2 \mathrm{H}, \mathrm{d}, J 8.6$) and 7.41 ($2 \mathrm{H}, \mathrm{d}, J 8.6$); m/z (FABMS, Pos.) 497 $(\mathrm{M}+\mathrm{H})^{+} ; \mathrm{m} / \mathrm{z}$ (HRFABMS) $497.2929\left[(\mathrm{M}+\mathrm{H})^{+}\right.$. Calc. for $\left.\mathrm{C}_{27} \mathrm{H}_{47} \mathrm{O}_{6} \mathrm{Si}: 497.2936\right]$.
(3R,4R,5S,6R,8R)-8,9-Isopropylidenedioxy-6-methyl-3,5-(4-methoxybenzylidenedioxy)-4-triethylsilyloxynonan-1-ol 18
To a stirred solution of compound $17(42.0 \mathrm{mg}, 85.2 \mu \mathrm{~mol})$ in THF ($800 \mu \mathrm{l}$) was added 0.5 m 9 -BBN in THF (850μ, 426 $\mu \mathrm{mol}$), and stirring was continued at room temperature for 9 h . The reaction mixture was treated with 3 m aqueous NaOH (220 $\mu \mathrm{l})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(220 \mu \mathrm{l})$, after which it was stirred at room temperature for 15 h . The reaction mixture was extracted with EtOAc, and the extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a residue. This was purified on a silica gel column (hexane-EtOAc, 9:1) to afford compound $18(36.8 \mathrm{mg}, 72.2 \mathrm{mmol}, 85 \%)$ as a colourless oil; $[a]_{\mathrm{D}}^{25}-9.66(c$ $\left.1.48, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3240,2940,1610,1455$ and 1380 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.66(6 \mathrm{H}, \mathrm{q}, J 7.6), 0.99(9 \mathrm{H}, \mathrm{t}, J 6.5), 1.01(3 \mathrm{H}, \mathrm{d}, J$ $6.5), 1.34(3 \mathrm{H}, \mathrm{s}), 1.38(3 \mathrm{H}, \mathrm{s}), 1.45-1.90(3 \mathrm{H}, \mathrm{m}), 2.05-2.23$ $(2 \mathrm{H}, \mathrm{m}), 3.30-3.56(3 \mathrm{H}, \mathrm{m}), 3.74(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.86$ $(1 \mathrm{H}, \mathrm{m}), 4.05(1 \mathrm{H}, \mathrm{dd}, J 1.6$ and 5.9$), 4.17(1 \mathrm{H}, \mathrm{m}), 5.50(1 \mathrm{H}, \mathrm{s})$, $6.87(2 \mathrm{H}, \mathrm{d}, J 8.7)$ and 7.36 ($2 \mathrm{H}, \mathrm{d}, J$ 8.7); m/z (FABMS, Pos.) $511(\mathrm{M}+\mathrm{H})^{+} ; m / z($ HRFABMS $) 511.3119\left[(\mathrm{M}+\mathrm{H})^{+}\right.$. Calc. for $\left.\mathrm{C}_{27} \mathrm{H}_{47} \mathrm{O}_{7} \mathrm{Si}: 511.3091\right]$.

Coupling reaction between compounds $\mathbf{3}$ and $\mathbf{4}$

To a solution of oxalyl chloride ($20 \mu \mathrm{l}, 230 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($450 \mu \mathrm{l}$), DMSO ($24 \mu \mathrm{l}, 350 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mu \mathrm{l})$ was slowly added at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 10 min after which it was treated dropwise with a solution of compound 18 ($57.3 \mathrm{mg}, 112 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mu \mathrm{l})$. After being stirred at $-78^{\circ} \mathrm{C}$ for 45 min , the mixture was treated with $\mathrm{Et}_{3} \mathrm{~N}(80 \mu \mathrm{l}$, $580 \mu \mathrm{~mol}$) and then allowed to warm to $-50^{\circ} \mathrm{C}$. After addition to it of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to afford the crude aldehyde $3(57.2 \mathrm{mg})$, which was used in the following reaction without separation. To a stirred solution of $4(84.7 \mathrm{mg}, 253$ $\mu \mathrm{mol})$ in a mixture of $\mathrm{Et}_{2} \mathrm{O}$-pentane ($2: 3 ; 300 \mu \mathrm{l}$), was added a 1.7 m solution of $\mathrm{Bu}^{t} \mathrm{Li}$ in pentane ($300 \mu \mathrm{l}, 510 \mu \mathrm{~mol}$); stirring was continued at $-78{ }^{\circ} \mathrm{C}$ for 10 min and then at room temperature for 1 h . After this a solution of the crude aldehyde (57.2 $\mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(1.2 \mathrm{ml})$ was added at $-78^{\circ} \mathrm{C}$ to the reaction mixture which was then stirred at room temperature for 11 h . After addition to it of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was chromatographed on a silica gel column (hexane-EtOAc, 9:1) to afford ($2 S, 3 R, 5 S, 7 R, 8 R, 9 S, 10 R, 12 R$)-12,13-isopropylidene-dioxy-3,10-dimethyl-7,9-(4-methoxybenzylidenedioxy)-8-
triethylsilyloxy-2-[2-(trimethylsilyl)ethoxymethoxy]tridecan-5ol 19a ($26.9 \mathrm{mg}, 37.0 \mu \mathrm{~mol}, 38 \%$) and the $5 R$-isomer 19b (29.3 $\mathrm{mg}, 40.3 \mu \mathrm{~mol}, 40 \%$) as a colourless oil. Compound 19a: $[a]_{\mathrm{D}}^{25}$ $+2.6\left(c 0.56, \mathrm{CDCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3380,2860,1605,1505,1370$ and $1240 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.01(9 \mathrm{H}, \mathrm{s}), 0.56(9 \mathrm{H}, \mathrm{q}, J 7.9), 0.95(3 \mathrm{H}$, d, $J 6.6$), $0.96(2 \mathrm{H}, \mathrm{m}), 0.98(6 \mathrm{H}, \mathrm{t}, J 8.0), 1.00(3 \mathrm{H}, \mathrm{d}, J 6.7)$, $1.16(3 \mathrm{H}, \mathrm{d}, J 6.4), 1.16(1 \mathrm{H}, \mathrm{m}), 1.33(3 \mathrm{H}, \mathrm{s}), 1.37(3 \mathrm{H}, \mathrm{s}), 1.60$ (1 H , ddd, $J 4.7,8.7$ and 13.6), $1.68(1 \mathrm{H}, \mathrm{m}), 1.71(1 \mathrm{H}, \mathrm{m}), 1.72$ (1 H, ddd, $J 5.6,8.6$ and 13.6), $1.90(1 \mathrm{H}, \mathrm{m}), 2.00(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ $14.3), 2.15(1 \mathrm{H}, \mathrm{m}), 3.28(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.43(1 \mathrm{H}, \mathrm{t}, J 8.8), 3.50(1 \mathrm{H}$, $\mathrm{t}, J 7.4), 3.55(1 \mathrm{H}, \mathrm{m}), 3.61(1 \mathrm{H}, \mathrm{m}), 3.63(1 \mathrm{H}, \mathrm{t}, J 8.8), 3.79$ $(1 \mathrm{H}, \mathrm{m}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.98(1 \mathrm{H}, \mathrm{m}), 4.04(1 \mathrm{H}, \mathrm{dd}, J 6.1$ and 7.9$)$, $4.17(1 \mathrm{H}, \mathrm{m}), 4.67(1 \mathrm{H}, \mathrm{d}, J 7.0), 4.71(1 \mathrm{H}, \mathrm{d}, J 7.0), 5.52(1 \mathrm{H}$, s), $6.84(2 \mathrm{H}, \mathrm{d}, J 8.7)$, and $7.34(2 \mathrm{H}, \mathrm{d}, J 8.7) ; \mathrm{m} / \mathrm{z}$ (FABMS, Pos.) $735(\mathrm{M}+\mathrm{H})^{+} ; m / z$ (HRFABMS) $735.4551\left[(\mathrm{M}+\mathrm{H})^{+}\right.$. Calc. for $\mathrm{C}_{38} \mathrm{H}_{71} \mathrm{O}_{9} \mathrm{Si}_{2}$: 735.4539].
Compound 19b [a] $]_{\mathrm{D}}^{25}-8.2\left(c 0.19, \mathrm{CDCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3380$, $2860,1605,1510,1370$ and $1240 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.00(9 \mathrm{H}, \mathrm{s}), 0.65$ ($9 \mathrm{H}, \mathrm{q}, J 7.9$), $0.96(2 \mathrm{H}, \mathrm{m}), 0.97(3 \mathrm{H}, \mathrm{d}, J 7.0), 0.99(6 \mathrm{H}, \mathrm{t}, J$ 7.9), $1.01(3 \mathrm{H}, \mathrm{d}, J 6.8), 1.12(3 \mathrm{H}, \mathrm{d}, J 6.2), 1.34(1 \mathrm{H}, \mathrm{s}), 1.38$ $(3 \mathrm{H}, \mathrm{s}), 1.48(1 \mathrm{H}, \mathrm{m}), 1.56(1 \mathrm{H}, \mathrm{m}), 1.62(1 \mathrm{H}, \mathrm{ddd}, J 4.7,8.5$ and 13.4), $1.69(1 \mathrm{H}, \mathrm{ddd}, J 2.3,9.5$ and 14.0$), 1.76(1 \mathrm{H}, \mathrm{ddd}, J 5.6$, 8.5 and 13.4$), 1.83(1 \mathrm{H}, \mathrm{m}), 1.93(1 \mathrm{H}$, ddd, $J 2.5,8.4$ and 14.0$)$, $2.16(1 \mathrm{H}, \mathrm{m}), 2.76(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 10.3), 3.46(1 \mathrm{H}, \mathrm{t}, J 8.8), 3.51$ $(1 \mathrm{H}, \mathrm{t}, J 7.5), 3.53(1 \mathrm{H}, \mathrm{m}), 3.63(2 \mathrm{H}, \mathrm{t}, J 8.3), 3.64(1 \mathrm{H}, \mathrm{m}), 3.80$ $(3 \mathrm{H}, \mathrm{s}), 3.84(1 \mathrm{H}, \mathrm{m}), 4.03(1 \mathrm{H}, \mathrm{m}), 4.06(1 \mathrm{H}, \mathrm{dd}, J 6.1$ and 7.9$)$, $4.19(1 \mathrm{H}, \mathrm{m}), 4.68(1 \mathrm{H}, \mathrm{d}, J 6.8), 4.73(1 \mathrm{H}, \mathrm{d}, J 6.8), 5.50(1 \mathrm{H}, \mathrm{s})$, $6.85(2 \mathrm{H}, \mathrm{d}, J 8.7)$ and 7.37 ($2 \mathrm{H}, \mathrm{d}, J 8.7$); m / z (FABMS, Pos.) $735(\mathrm{M}+\mathrm{H})^{+} ; m / z($ HRFABMS $) 735.4526\left[(\mathrm{M}+\mathrm{H})^{+}\right.$. Calc. for $\mathrm{C}_{38} \mathrm{H}_{71} \mathrm{O}_{9} \mathrm{Si}_{2}$: 735.4539].

($2 S, 3 R, 5 S, 7 R, 8 R, 9 S, 10 R, 12 R$)-12,13-Isopropylidenedioxy-

 3,10-dimethyl-7,9-(4-methoxybenzylidenedioxy)-5-methoxymethoxy-8-triethylsilyloxy-2-[2-(trimethylsilyl)ethoxymethoxy]tridecane 20A $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution ($30 \mu \mathrm{l}$) of compound $19 \mathrm{a}(26.0 \mathrm{mg}, 40.3$ $\mu \mathrm{mol}$) was treated with $\operatorname{Pr}_{2}{ }_{2} \mathrm{NEt}(120 \mu \mathrm{l}, 700 \mu \mathrm{~mol})$ and chloromethyl methyl ether (MOMCl, $20 \mu \mathrm{l}, 260 \mu \mathrm{~mol}$) at room temperature for 17 h . After addition of 1 m aqueous HCl , the reaction mixture was extracted with CHCl_{3}. The extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to afford a residue. This was purified on a silica gel column (hexane-EtOAc, 9:1) to afford compound 20 ($25.8 \mathrm{mg}, 34.7$ $\mu \mathrm{mol}, 86 \%)$ as a colourless oil; $[a]_{\mathrm{D}}^{23}+12\left(c 0.28, \mathrm{CHCl}_{3}\right) ; v_{\max } /$ $\mathrm{cm}^{-1} 2955,1620,1520,1380,1250,1115,1035$ and 835 ;
$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.01(9 \mathrm{H}, \mathrm{s}), 0.66(6 \mathrm{H}, \mathrm{q}, J 7.9), 0.91(3 \mathrm{H}, \mathrm{d}, J 6.7)$, $0.99(9 \mathrm{H}, \mathrm{t}, J 7.9), 1.00(3 \mathrm{H}, \mathrm{d}, J 6.7), 1.08$ (3H, d, J 6.3), 1.35 $(3 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.44(1 \mathrm{H}$, ddd, $J 5.0,9.0$ and 14.0), 1.5-1.7 $(3 \mathrm{H}, \mathrm{m}), 1.79(1 \mathrm{H}$, ddd, $J 5.6,8.3$ and 13.8$), 1.95(1 \mathrm{H}, \mathrm{br}$ dd, $J 10.1$ and 12.6$), 2.17(1 \mathrm{H}, \mathrm{m}), 3.39(3 \mathrm{H}, \mathrm{s}), 3.39(1 \mathrm{H}, \mathrm{dd}, J$ 8.8 and 20.4$), 3.52(1 \mathrm{H}, \operatorname{br~d}, J 9.4), 3.53(1 \mathrm{H}, \mathrm{d}, J 7.4), 3.58$ $(1 \mathrm{H}, \mathrm{m}), 3.63(2 \mathrm{H}, \mathrm{m}), 3.75(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 9.0), 3.80(3 \mathrm{H}, \mathrm{s}), 3.94$ $(1 \mathrm{H}, \mathrm{m}), 4.07(1 \mathrm{H}, \mathrm{dd}, J 5.9$ and 7.8$), 4.20(1 \mathrm{H}, \mathrm{m}), 4.64(1 \mathrm{H}, \mathrm{d}$, $J 6.7$), $4.65(1 \mathrm{H}, \mathrm{d}, J 7.0), 4.70(1 \mathrm{H}, \mathrm{d}, J 7.0), 4.73(1 \mathrm{H}, \mathrm{d}, J 6.7)$, $5.47(1 \mathrm{H}, \mathrm{s}), 6.87(2 \mathrm{H}, \mathrm{d}, J 8.7)$ and $7.39(1 \mathrm{H}, \mathrm{d}, J 8.7) ; \mathrm{m} / \mathrm{z}$ (FABMS, Pos.) $779(\mathrm{M}+\mathrm{H})^{+} ; m / z$ (HRFABMS) 779.4786 $\left[(\mathrm{M}+\mathrm{H})^{+}\right.$. Calc. for $\mathrm{C}_{40} \mathrm{H}_{75} \mathrm{O}_{10} \mathrm{Si}_{2}$: 779.4801].

(2S,3R,5S,7R,8R,9S,10R,12R)-3,10-Dimethyl-12,13-isopropylidenedioxy-7,9-(4-methoxybenzylidenedioxy)-5-methoxymethoxytridecane-2,8-diol 21

To a solution of the MOM derivative $\mathbf{2 0}(22 \mathrm{mg}, 29.7 \mu \mathrm{~mol})$ was added a 1 m THF solution ($100 \mu \mathrm{l}, 100 \mu \mathrm{~mol}$) of TBAF after which the solvent was evaporated in vacuo. 1,3-Dimethyl-3,4,5,6-tetrahydropyrimidin-2 $(1 \mathrm{H})$-one (DMPU, $30 \mu \mathrm{l}$) and crushed $4 \AA$ molecular sieves $(10 \mathrm{mg})$ were added to the residue, and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 15 h . After addition of $\mathrm{Et}_{2} \mathrm{O}$ and water, the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was chromatographed on a silica gel column (hexane-EtOAc, 95:5) to afford compound $21(12.8 \mathrm{mg}, 24.3 \mu \mathrm{~mol}, 82 \%)$ as a colourless oil; $[a]_{\mathrm{D}}^{25}+11(c$ $\left.0.90, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3340,2970,2935,1620,1520,1380$, 1250,1035 and $665 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.90(3 \mathrm{H}, \mathrm{d}, J 6.3), 1.03(3 \mathrm{H}, \mathrm{d}$, $J 6.9), 1.13(3 \mathrm{H}, \mathrm{d}, J 6.3), 1.35(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{s}), 1.50-1.72$ $(5 \mathrm{H}, \mathrm{m}), 1.75-1.85(2 \mathrm{H}, \mathrm{m}), 2.0-2.1(2 \mathrm{H}, \mathrm{m}), 2.25(1 \mathrm{H}, \mathrm{m})$, $3.60(1 \mathrm{H}, \mathrm{br}$ d, $J 4.8), 3.41(3 \mathrm{H}, \mathrm{s}), 3.50(1 \mathrm{H}, \mathrm{d}, J 9.2), 3.52(1 \mathrm{H}$, dd, $J 2.2$ and 9.2), $3.58(1 \mathrm{H}, \mathrm{m}), 3.71(1 \mathrm{H}, \mathrm{dt}, J 5.9$ and 8.8$)$, $3.80(3 \mathrm{H}, \mathrm{s}), 3.99(1 \mathrm{H}, \mathrm{m}), 4.06(1 \mathrm{H}, \mathrm{dd}, J 6.0$ and 7.7$), 4.22$ $(1 \mathrm{H}, \mathrm{m}), 4.69(1 \mathrm{H}, \mathrm{d}, J 6.9), 4.75(1 \mathrm{H}, \mathrm{d}, J 6.8), 5.48(1 \mathrm{H}, \mathrm{s})$, $6.87(2 \mathrm{H}, \mathrm{d}, J 8.7)$ and 7.38 ($2 \mathrm{H}, \mathrm{d}, J 8.7$); m / z (FABMS, Pos.) $527(\mathrm{M}+\mathrm{H})^{+} ; \mathrm{m} / \mathrm{z}(\mathrm{HRFABMS}) 527.3201\left[(\mathrm{M}+\mathrm{H})^{+}\right.$. Calc. for $\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{O}_{9}: 527.3219$].

(3R,5S,7R,9S,10R,12R)-3,10-Dimethyl-12,13-

 isopropylidenedioxy-7,9-(4-methoxybenzylidenedioxy)-5-methoxymethoxytridecane-2,8-dione 24To a solution of the diol derivative $21(12.5 \mathrm{mg}, 23.7 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mu \mathrm{l})$ were added $4 \AA$ (molecular sieves 10 mg) and 4methylmorpholine N-oxide ($8.4 \mathrm{mg}, 70 \mu \mathrm{~mol}$). After the mixture had been stirred at room temperature for 10 min , tetrapropylammonium perruthenate ($80 \mu \mathrm{~g}, 0.23 \mu \mathrm{~mol}$) was added to it, and stirring was continued at room temperature for 3 h . After insoluble materials had been filtered off from the reaction mixture, it was evaporated in vacuo, and the residue was purified by chromatography on a silica gel column (hexane-EtOAc, $4: 1$) to afford compound $\mathbf{2 4}(8.9 \mathrm{mg}, 17.1 \mu \mathrm{~mol}, 72 \%)$ as a colourless oil; $[a]_{\mathrm{D}}^{25}+10\left(c 0.90, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 2950,1705,1610,1510$, 1380,1245 and $1025 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.99(3 \mathrm{H}, \mathrm{d}, J 6.8), 1.07(3 \mathrm{H}, \mathrm{d}$, $J 7.0), 1.34(3 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.49(1 \mathrm{H}, \mathrm{m}), 1.55(1 \mathrm{H}, \mathrm{m})$, $1.75(1 \mathrm{H}$, ddd, $J 3.5,10.2$ and 14.2$), 1.81(1 \mathrm{H}$, ddd, $J 6.3,8.7$ and 14.6$), 2.01(1 \mathrm{H}, \mathrm{dd}, J 5.1$ and 8.4$), 2.05(1 \mathrm{H}, \mathrm{m}), 2.15(3 \mathrm{H}, \mathrm{s})$, $2.23(1 \mathrm{H}$, ddd, $J 3.9,6.8$ and 14.6$), 2.51(1 \mathrm{H}, \mathrm{m}), 2.72(1 \mathrm{H}, \mathrm{m})$, $3.35(3 \mathrm{H}, \mathrm{s}), 3.52(1 \mathrm{H}, \mathrm{t}, J 7.7), 3.82(1 \mathrm{H}, \mathrm{m}), 3.82(3 \mathrm{H}, \mathrm{s}), 4.05$ $(1 \mathrm{H}, \mathrm{dd}, J 6.2$ and 8.0$), 4.17(1 \mathrm{H}, \mathrm{m}), 4.51(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.53(1 \mathrm{H}$, dd, $J 2.6$ and 3.8$), 4.57(1 \mathrm{H}, \mathrm{m}), 4.66(1 \mathrm{H}, \mathrm{d}, J 6.8), 5.93(1 \mathrm{H}, \mathrm{s})$, $6.91(2 \mathrm{H}, \mathrm{d}, J 8.8)$ and 7.44 ($2 \mathrm{H}, \mathrm{d}, J 6.9$); m / z (FABMS, Pos.) $(\mathrm{M}+\mathrm{H})^{+} ; m / z$ (HRFABMS) $523.2886\left[(\mathrm{M}+\mathrm{H})^{+}\right.$. Calc. for $\left.\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{O}_{9} ; 523.2906\right]$.

(3R,5S,7R,9S,10R,12R)-2,8-Di(1,3-dithiolan-2-yl)-3,10-dimethyl-12,13-isopropylidenedioxy-7,9-(4-

methoxybenzylidenedioxy)-5-methoxymethoxytridecane 25
To a solution of diketone $\mathbf{2 4}(8.5 \mathrm{mg}, 16.3 \mu \mathrm{~mol})$ and zinc iodide ($0.1 \mathrm{mg}, 0.3 \mu \mathrm{~mol}$) in diethyl ether ($50 \mu \mathrm{l}$) was added ethylene-
dithiobis(trimethylsilane) $(15.5 \mathrm{mg}, 65.2 \mu \mathrm{~mol})$ at $-20^{\circ} \mathrm{C}$, and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 h . After addition to it of water, the mixture was extracted with diethyl ether, and the extract was purified on a silica gel column (hexane-EtOAc, $8: 1)$ to afford compound $25(5.7 \mathrm{mg}, 8.5 \mu \mathrm{~mol}, 52 \%)$ as a colourless oil, together with recovered $24(2.9 \mathrm{mg}, 5.5 \mu \mathrm{~mol}, 34 \%)$.
Compound $25[a]_{\mathrm{D}}^{25}+13\left(c 0.40, \mathrm{CDCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 2970$, $1620,1520,1380,1250,1035$ and $655 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.90(3 \mathrm{H}, \mathrm{d}, J$ $6.3), 1.03(3 \mathrm{H}, \mathrm{d}, J 6.9), 1.34(3 \mathrm{H}, \mathrm{s}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{s})$, $1.40-1.90(11 \mathrm{H}, \mathrm{m}), 2.0-2.1(2 \mathrm{H}, \mathrm{m}), 2.35(1 \mathrm{H}, \mathrm{m}), 3.60(1 \mathrm{H}, \mathrm{br}$ d, $J 4.8), 3.41(3 \mathrm{H}, \mathrm{s}), 3.53(1 \mathrm{H}, \mathrm{d}, J 9.2), 3.54(1 \mathrm{H}, \mathrm{dd}, J 2.2$ and $9.2), 3.60(1 \mathrm{H}, \mathrm{m}), 3.71(1 \mathrm{H}, \mathrm{dt}, J 5.9$ and 8.8$), 3.80(3 \mathrm{H}, \mathrm{s}), 3.84$ $(1 \mathrm{H}, \mathrm{m}), 4.02(1 \mathrm{H}, \mathrm{dd}, J 6.0$ and 7.7$), 4.12(1 \mathrm{H}, \mathrm{m}), 4.70(1 \mathrm{H}, \mathrm{d}$, $J 6.9), 4.75(1 \mathrm{H}, \mathrm{d}, J 6.8), 5.50(1 \mathrm{H}, \mathrm{s}), 6.87(2 \mathrm{H}, \mathrm{d}, J 8.7)$ and 7.38 ($2 \mathrm{H}, \mathrm{d}, J 8.7$); m / z (FABMS Pos.) $675(\mathrm{M}+\mathrm{H})^{+} ; \mathrm{m} / \mathrm{z}$ (HRFABMS) $675.2532\left[(\mathrm{M}+\mathrm{H})^{+}\right.$. Calc. for $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{O}_{7} \mathrm{~S}_{4}$: 675.2517].

(3R,5S,7R,9S,10R,12R)-2,8-Di(1,3-dithiolan-2-yl)-3,10-

 dimethyl-5,7,9,12,13-pentaacetyloxytridecane 26To a solution of the dithiolane $25(6.2 \mathrm{mg}, 9.1 \mu \mathrm{~mol})$ in THF ($50 \mu \mathrm{l}$) was added $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mg}, 0.5 \mu \mathrm{~mol})$ and stirring was continued at room temperature for 5 h . After addition to it of 0.1 m aqueous NaHCO_{3}, the reaction mixture was extracted with EtOAc, and the extract washed with water. It was then evaporated in vacuo, and the residue was treated with $\mathrm{Ac}_{2} \mathrm{O}$ $(50 \mu \mathrm{l})$ and pyridine $(50 \mu \mathrm{l})$ at room temperature for 17 h . After evaporation of the solvent from the mixture, the residue was chromatographed on silica gel (hexane-EtOAc, 10:1) to afford compound $26(4.7 \mathrm{mg}, 6.9 \mathrm{mmol}, 76 \%)$ as a colourless oil; $[a]_{\mathrm{D}}^{25}+8\left(c 0.32, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 2970,2935,1720,1620$, 1520,1380 and $1035 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.90(3 \mathrm{H}, \mathrm{d}, J 6.3), 1.03(3 \mathrm{H}, \mathrm{d}$, $J 6.9), 1.34(3 \mathrm{H}, \mathrm{d}, J 6.3), 1.40-1.95(11 \mathrm{H}, \mathrm{m}), 2.04(1 \mathrm{H}, \mathrm{m})$, $2.05(3 \mathrm{H}, \mathrm{s}), 2.08(1 \mathrm{H}, \mathrm{m}), 2.08(3 \mathrm{H}, \mathrm{s}), 2.10(6 \mathrm{H}, \mathrm{s}), 2.11(3 \mathrm{H}$, s), $2.32(1 \mathrm{H}, \mathrm{m}), 4.67(1 \mathrm{H}, \mathrm{m}), 4.87(1 \mathrm{H}, \mathrm{m}), 4.97(1 \mathrm{H}, \mathrm{m}), 5.01$ $(1 \mathrm{H}, \mathrm{dd}, J 6.0$ and 7.7$), 5.33(1 \mathrm{H}, \mathrm{m})$ and $5.68(2 \mathrm{H}, \mathrm{m}) ; m / z$ (FABMS, Pos.) $683(\mathrm{M}+\mathrm{H})^{+} ; m / z$ (HRFABMS) 683.2025 $\left[(\mathrm{M}+\mathrm{H})^{+}\right.$. Calc. for $\left.\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{O}_{10} \mathrm{~S}_{4}: 683.2051\right]$.

(3R,5S, $7 R, 9 S, 10 R, 12 R$)-3,10-Dimethyl-5,7,9,12,13-pentaacetyloxytridecane-2,8-dione 2

To a solution of $26(2.0 \mathrm{mg}, 2.9 \mu \mathrm{~mol})$ in $\mathrm{CHCl}_{3}(40 \mu \mathrm{l})$ were added $\mathrm{CaCO}_{3}(0.6 \mathrm{mg}, 6 \mu \mathrm{~mol})$ and then a 1 m methanolic solution of $\mathrm{Hg}\left(\mathrm{ClO}_{4}\right)_{2}(6 \mu \mathrm{l}, 6 \mu \mathrm{~mol})$. The mixture was stirred at room temperature for 10 min , after which it was diluted with diethyl ether ($500 \mu \mathrm{l}$), filtered and evaporated in vacuo. The residue was purified on a silica gel column (hexane-EtOAc, $4: 1)$ to afford $2(0.9 \mathrm{mg}, 1.7 \mu \mathrm{~mol}, 59 \%)$ as colourless oil; $[\alpha]_{\mathrm{D}}^{25}$ $+12\left(c 0.10, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 2970,2950,1740,1720,1620$, 1520,1250 and $1035 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.90(3 \mathrm{H}, \mathrm{d}, J 6.3), 1.03(3 \mathrm{H}, \mathrm{d}$, $J 6.9$), $1.34(3 \mathrm{H}, \mathrm{d}, J 6.3), 1.40-1.65(4 \mathrm{H}, \mathrm{m}), 1.80-1.95(3 \mathrm{H}, \mathrm{m})$, $2.05(3 \mathrm{H}, \mathrm{s}), 2.08(3 \mathrm{H}, \mathrm{s}), 2.09(1 \mathrm{H}, \mathrm{m}), 2.10(6 \mathrm{H}, \mathrm{s}), 2.11(3 \mathrm{H}, \mathrm{s})$, $2.13(1 \mathrm{H}, \mathrm{m}), 2.18(3 \mathrm{H}, \mathrm{s}), 2.24(1 \mathrm{H}, \mathrm{m}), 4.54(1 \mathrm{H}, \mathrm{m}), 4.69$ $(1 \mathrm{H}, \mathrm{m}), 4.86(1 \mathrm{H}, \mathrm{m}), 5.06(1 \mathrm{H}, \mathrm{dd}, J 6.0$ and 7.7$), 5.23(1 \mathrm{H}, \mathrm{m})$ and $5.64(1 \mathrm{H}, \mathrm{m}) ; m / z$ (FABMS, Pos.) $531(\mathrm{M}+\mathrm{H})^{+} ; m / z$ (HRFABMS) $531.2409\left[(M+H)^{+}\right.$. Calc. for $\mathrm{C}_{44} \mathrm{H}_{65} \mathrm{O}_{12}$: 531.2441].

Acknowledgements

We thank Dr K. Horita, Hokkaido University, for useful suggestion for the synthesis. This work was partly supported by a Grant-in-Aid for Naito Foundation and a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan.

References

1 M. Ishibashi and J. Kobayashi, Heterocycles, 1997, 44, 543, and reference cited therein
2 M. Tsuda, T. Sasaki and J. Kobayashi, J. Org. Chem., 1994, 59, 3734.

3 A. G. M. Barrett, J. J. Edmunds, K. Horita and C. J. Parkinson, J. Chem. Soc., Chem. Commun., 1992, 1236.

4 K. B. Sharpless and M. Caron, J. Org. Chem., 1985, 50, 1557.
5 Y. Oikawa, K. Horita and O. Yonemitsu, Tetrahedron Lett., 1982, 23, 889.
6 M. T. Reetz and M. Hüllmann, J. Chem. Soc., Chem. Commun., 1986, 1600.
7 W. F. Bailey and E. R. Punzalan, J. Org. Chem., 1990, 55, 5404.
8 I. Ohtani, T. Kusumi, Y. Kashman and H. Kakisawa, J. Am. Chem Soc., 1991, 113, 4092.
9 B. H. Lipshutz and T. A. Miller, Tetrahedron Lett., 1982, 23, 889.

10 (a) W. P. Griffith, S. V. Ley, G. P. Whitcombe and A. D. White, J. Chem. Soc., Chem. Commun., 1987, 1625; (b) S. V. Ley,
J. Norman, W. P. Griffith and S. P. Marsden, Synthesis, 1994, 639.

11 D. A. Evans, L. K. Truesdate, K. G. Grimm and S. L. Nesbitt, J. Am. Chem. Soc., 1977, 99, 5009.

12 L. Bernardi and D. Ghiringhelli, J. Org. Chem., 1987, 52, 5021.
Paper 7/03141F
Received 7th May 1997
Accepted 14th August 1997

[^0]: $\ddagger \Delta \delta$ Values $\left[\Delta \delta(\right.$ in Hz$)=\delta_{S}-\delta_{R}$] obtained for chemical shifts differences of (S) - and (R)-MTPA esters of 19b: $\mathrm{H}-16,+13.4 ; \mathrm{H}_{2}-17,+48.1$ and $+24.8 ; \mathrm{H}-18,+18.0 ; \mathrm{H}_{2}-19,-40.8$ and $-50.3 ; \mathrm{H}-20,-37.8 ; \mathrm{H}-21$, $-13.7 ; \mathrm{H}-22,-13.2 ; \mathrm{H}-23,-6.6 ; \mathrm{H}_{2}-24,-0.7$ and $+4.6 ; \mathrm{H}-25,+1.0$; $\mathrm{H}_{2}-26,+1.1$ and $+4.0 ; \mathrm{H}_{3}-30,+52.3 ; \mathrm{H}_{3}-31,+42.3$.

